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PROPAGATION OF STRESS WAVES IN LAYERED MEDIA UNDER IMPACTLOADING 

(ACOUSTICAL APPROXIMATION) 
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I. INTRODUCTION 

The impact loading of various bodies and structures by the detonation of an attached 
high-explosive charge, the firing of a projectile (driver), or thermal irradiation with a 
pulse of duration ~i0 -9 sec can result in scabbing of the loaded bodies near their free sur- 
faces, which originates in the unloading phase under the action of a stress wave. The action 
of tensile stress can be abated and the danger of scabbing can be diminished by the applica- 
tion of special layered systems, in which the generated shock impulse is partitioned at the 
layer interfaces into a branched system of compression and tension waves. It is technologi- 
cally feasible at the present time to construct layered systems and structures from various 
types of materials by, e.g., the explosive welding of metal layers not amenable to conven- 
tional welding techniques, vacuum evaporation or detonation flame spraying of condensed films, 
the bonding of a series of layers, etc. The problems of shock transmission in layered sys- 
tems have been investigated in studies of the influence of the parameters of colliding plates 
and buffer layers on the scabbing process [I] and on the quality of a welded joint between 
bonded materials in explosive welding [2]. An analysis of the wave processes for two- and 
three-layer systems has been carried out in [3-5]. A detailed theoretical and experimental 
study of the attenuation of shock waves in layered materials is given in [6]. The propaga- 
tion of acoustic and electromagnetic waves in layered media has also been investigated in 
application to geophysical problems [7]. 

The objective of the present study is to analyze the generation of stress waves in a 
planar layered medium under impact loading in the acoustical approximation and to explore the 
possibility of preventing scabbing. 

2. MODEL OF AN ELASTIC LAYERED MEDIUM 

Let a layered medium consist of n different layers. A schematic diagram of such 
a medium of length L in the one-dimensional planar case is shown in Fig. i. Each 

O i-th layer of the meidum (i = i, 2,...,n) is characterized by the true density Pi, the 
dynami c rigidity Z i = p~a i (a i is the longitudinal sound velocity in the i-th layer), and the 
length li(L=E~l~). The quantity Z i is also called the acoustic impedance and is related as 

follows to the elastic modulus of the material E~(~i=FE~):Zi= F~ . We denote the boundary 
between the i-th and (i + 1)-st layer by K i. We assume that the impact loads are not too 
strong, so that the problem can be restricted to the acoustical approximation, i.e., we as- 
sume that the rigidity of the layers Zi does not depend on the intensity of the transmitte~ 
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waves and, hence, that the condltlons Pi = Pi0, ai = ai0 hold everywhere; then Z i = Zi0 (Pi0, 
ai0 correspond to the standard initial conditions P0 = 0, To = 300~ We assume that a 
rectangular compression pulse J~ of duration t w is generated in the first layer as a result 
of impact action along the r axis. In the subsequent transmission of J~ through the layers, 
multiple reflections take place at the boundaries Ki owing to the differences in the rigidi- 
ties Z i of the layers; these reflections produce reflected pulses J~ and transmitted pulses 
J~+l of the same duration t w. The pulses J~ and JT+I can be either compression or tension 
pulses, depending on the ratio between the rigidities Z i and Zi+1. If the tensile stresses 
in the i-th layer exceed a certain threshold value o~ characterizing the strength properties 
of the material of the i-th layer in tension under dynamic loading, scabbing will be possible 
inside the layer either almost instantaneously [8] or with a certain delay [9]. We assume 
that the tensile strength in each intermediate layer Ki, denoted by o ~ 1,i+l, is large and at 
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Fig. 1 

least as great as the strengths o*, oi+ I of the layers adjacent to K i. In the case ~* i+l < 
o~, o~+l, destruction will take place along the bonding plane of the layers K i. 

We consider the process of trasnmission of a rectangular pulse in a layered medium (see 
Fig. I). At the instant of transmission of the stress pulse jI. across the boundary K i sepa- 

l 
rating the layers, the conditions of continuity of the stress o and displacements u on the 
left and right of the boundary Ki must be satisfied: 

a i =  ai+l, u ~ =  ui+ 1(for i----- i, 2 . . . . .  n - -  l). ( 2 . 1 )  

Separating out the incident (jI), reflected (jR), and transmitted (JT+I) pulses at the bound- 
ary Ki, we can write the interface conditions (2.1) in the form [10] 

Let the displacement u and, hence, the velocity v of particles of the medium in the i-th layer 
be described by a certain function 9 of the coordinates r and t: 

u i = _q)(r -+- a / ) ,  v i = u t ---- + _ - a i ~ ' ( r  +_4- a~t ) ,  ( 2 ~  

which satisfies the equation of motion 

p~ . :  OaJ.Or, ( 2 . 4 )  

Bearing Hooke's law (o i = Ei3ui/3r) in mind, we obtain 

ai : Ei(P' (r +_ n i t  ) = p~ i = Ziv i. ( 2 . 5 )  

A f t e r  d i f f e r e n t i a t i n g  t h e  s e c o n d  r e l a t i o n  i n  ( 2 . 2 )  w i t h  a l l o w a n c e  f o r  ( 2 . 5 )  and t h e  d i r e c t i o n  
o f  m o t i o n  o f  t h e  r e f l e c t e d  and t r a n s m i t t e d  p u l s e s ,  we h a v e  

( :  ~I -I- a ~ ) / Z  i = aT+i/Z#.+1. (2.6) 

From the system (2.2) and (2.6) we obtain at once 

T _ c~{2Zi+I/(Z~ 45 Z~+I). (2 7) o~ : o{ (zi+ I - zi)/(% + z~+~), m+~ - 

The relation for the velocities is found analogously: 

v[ : v~ (Z i -- Zi+I) / (Z  i -[- Zi+:t ), vy+:t = v~2Zi/(Z i + Zi+I). ( 2 . 8 )  

An analysis of (2.7) and (2.8) leads to the following conclusion. Depending on the ratios of 
the rigidities Z i and Zi+1, the transmission of the pulse jI will either be partially impeded 

during transition into a less rigid medium with an increase in the particle velocity vi (in 
I 

this case sgno R =--sgn oi, and ]o + J<la l or be amplified with a decrease in the 

velocity v i during transition into a more rigid medium (in which case sgno R = sgn o I and 

1o/+i[>1o~I, v[$1<v[). The effect of amplification of the bulk particle velocity when a pulse 

exits into a less rigid medium has been utilized in [II] to impart large velocities to a 
driver plate by the application of a buffer layer with a lower rigidity. If the rigidities 
in the adjacent layers coincide, the pulse jI will cross the boundary Ki without reflection: 

a,n::0,  o T  1--o{/, v [ = 0 ,  vT+l=e.I., ( 2 . 9 )  

When the interface K i represents a free surface FS (see the surface K n = FS r in Fig. I), 

R I T ~ 0 ,  R , I  , T  _ _  . . I  
O n = - - O n '  %':L V n = t n '  ~r=L--2z , ,"  (2.10) 

If the (i + 1)-st layer represents an absolutely rigid medium, 

0,~ : o I , a T L  2 ~ ,  "" ' v T - 
= '~ = -- * ,~' ~=L -: O. (2. 1 1 ) 
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Relations (2.10) and (2.11) follow from (2.7) and (2.8), in which o T and v T correspond to 
interaction of the pulse with the boundary Kr at r = L during the time t w. 

Equations (2.4) and (2.5) together with the appropriate initial and boundary conditions 
completely determine the motion of the pulse J~ in the layered medium. If the parameters of 
the pulse J~ are known from the boundary conditions of the problem, relations (2.7) and (2.8) 
can be used to find the stresses and particle velocities in the layers. Below, we discuss 
several reasonably simple problems, the solutions of which can be used to exhibit the funda- 
mental laws inherent in the generation and interaction of stress waves in layered media and 
to draw a number of conclusions applicable to more complex situations. These problems have 
been chosen to illustrate the proposed computational procedure, which makes it possible to 
solve not only direct problems, but also inverse problems in the design of layered blast 
shields [I, 12] (to determine the rigidities Z i and thickness li of the layers). 

3. ANALYSIS OF WAVE PROCESSES IN THE THREE-LAYER PLATE 

The loading of a homogeneous plate with a compression pulse jI of duration t w, where the 
rigidity of the plate is uniform and equal to Z over the entire length (total thickness) L, 
has the effect of producing a tension pulse jR of amplitude o R = --o I near the backside free 
surface FSr. If a multilayer plate of the same length L = E~=l/i is used instead of a homo- 
geneous plate, where the rigidity ZI = Z and the subsequent layers have decreasing Z i (Z i > 
Zi+ z for i = I, 2,...,n -- I), then the tension pulse generated near FS r will have a smaller 
amplitude, because the transmitted compression pulse will be partially impeded at each bound- 
ary Ki. The amplitude of the reflected tension pulse o~ at the boundary Ki, according to 
(2.7), can be controlled by selection of the layer rigidities Z i. In order for the reflected 
tension pulses J~ moving toward the free surface K0 =FS/ not to overtake one another (result- 

R ing in summation of the pulses Ji and amplification of the resultant pulse amplitude) and to 
be separated by a certain delay time t~ it is necessary to choose sufficient thickness li of 

i' 
the layers on the basis of the condition 2Ati+ 1 ~ tw(t w + t~ = 2Ati+1, Ati+ 1 = li+z/ai+1). 
If we set Ati+ z = tw/2, the total thickness L of the plate will be a minimum in this case, 
and the tension pulses J~ will travel in tight proximity to one another (t~ = 0). We con- 
sider in detail the process of the inception and evolution of the system of incident, re- 
flected, and transmitted pulses in a three-layer plate. 

Problem I. Let a rectangular compression pulse J~ be generated as a result of impact 
in the first layer of a three-layer plate of thickness L = Z~=I~ i (i = I, 2, 3) with speci- 
fied layer thicknesses meeting the condition Zz > Z2 > Z3 (see time t I in Fig. 2), and let 

w the condition l~ < I i be satisfied by the widths I i = ait w of the incident pulse jI (of dura- 
tion t w) in the layers I i of the plate. We seek the stresses of the pulses J~ and JI+l as a 
function of the rigidities Z i- 

We introduce the following subscript and superscript indexing system for the pulses gen- 
erated in the layered medium. A digit subscript indexes the order of the layer in which the 
pulse is acting at a given time, and a letter superscript (I, R, T) indicates the way in 

TTTT is the pulse transmitted into the third layer, which the pulse is formed. For example, of 2 3 
jITR is the pulse reflected from the boundary K2 and acting in the second layer and jITTR is 
122 ' 1239 
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jITT 
the pulse generated in the reflection of 123 from the free surface K3 at the right end. 
Every addition of a superscript R indicates a reversal of the direction of motion of the 
pulse, and the number of R's indicates the degree of branching of the pulse (secondary, ter- 
tiary, etc.) so that jITTRR denotes a secondary pulse moving in the third layer from K2 to- , 1 2 3 3 3  

I'''9 is ward K3. The sign of the stresses o I--" (compression or tension) of the pulse Jl .i 
1 . 

determined by relation (2.7). 

Figure 2 shows a different times the process of transmission of the pulse J{ across the 
boundaries K1, K2, and K3 of a three-layer plate with the formation at K1 and K2 of unloading 
waves (traveling from right to left), which initially relieve the compression region and are 
then transformed into tension pulses (see the pulses J~ and ~ITR at times t2 and t3) A 

~122 

tension pulse IITTR is formed at K3 In connection with the motion of the pulses through the ~1233 

layers of the plate it is assumed for convenience that ~1 = a2 = ~3 and that the reduction in 
the rigidities is determined by the densities of the layers, p~ > p~ > p~. The system of ten- 
sion pulses jIR TITR and jITTR acting in the plate at time t6 is distinguished by identical 

ii, ~ 1233 

cross-hatching in Fig. 2. For comparison, the pulse J'~ that would have occurred if the plate 
plate were homogeneous over its entire thickness with Z = Z1 is superimposed on the pulse 
TITTR in the third layer near the surface K3. In layers I and 2, as in layer 3, the ampli- ~ 1 2 3 3  
tudes of 311IR and jITR123 are smaller than the amplitude of j~{R. It is clear that the amplitude 

ol---Q l..." of the tension pulse acting in the i-th layer can be made smaller than the threshold 

level of the fracture stresses o[. 

It would seem that the problem is solved. However, if we trace the subsequent evolution 
of a tension pulse say jITR as it is transmitted across K~ into a more rigid medium, moving 

' 122' 

from right to left in the direction of K0 (the process of transmission of jITR from layer 2 
122 

into layer I is shown at time t6 in Fig. 2), we find that the amplitude of the tension pulse 
jITRT has increased The secondary pulse JSTgg reflected from K1 into layer 2 is a tension 

1221 " • 

pulse. Then the pulse ]ITRR exits across K2 into the less rigid layer 3, in which case the ~1222 

amplitude of the transmitted tension pulse jITRRT decreases and the pulse jITRRR reflected 
12223 , 12222 

from K2 is a compression pulse. All secondary, tertiary, etc., tension and compression pulses 
generated in transition across the interfaces Ki have small amplitudes (corresponding esti- 
mates will be given below) and, by interfering with the primary tension pulses shown in Fig. 2 
at time t6, are capable of amplifying or attenuating their action. These pulses are disre- 
garded from now on, since their contribution is small. The complete system of transmitted 
and reflected compression and tension pulses is shown in the r--t diagram of Fig. 3. The lines 
of the main contour correspond to compression, and those of the auxiliary contour represent 
tension. The solid lines indicate the motion of the leading edge of all the stress pu!ses~ 
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TABLE I 

IT...T 
n ~ .n 

1 1 
2 0,777 
3 0,533 
4 0,457 
5 0,406 
6 0,369 
7 0,340 
8 0,318 

"2. 

t 
--0,888 
--0,853 
--0,835 
--0,825 
--0,8t8 
--0,8t4 
--0,8t0 

t"o 
2o 
30 
40 

0,300 
0,283 
0,200 
0,t62 
0,t40 
0,t25 
0,t14 

--0,807 
~0,805 t 
--0,795 - 2 
--0,792 3 
--0,790 4 
--0,789 5 
--0,788 , 6 

TABLE 2 
"2. 

t 1 
0,666 --0,888 
0,250 --0,563 
0,063 --0,262 
0,012 --0 095 
0,001 --0,028 

and the dashed line represents the motion of the trailing edge of only the pulses J~ IT , J12, 
IR and J11" In Fig. 3 the rigidities Z i satisfy the condition ZI > Z2 > Z3, and the velocities 

a2 > al > ~3. It is evident from the r--t diagram that tension and compression pulses moving 
in opposite directions occur in the layered medium, depending on the ratio of the rigidities 
Zi/Zi+ I. We call attention to the following. The compression pulse o111,TIRR beginning with 
time t a and the compression pulse jITRTR beginning with time t b will attenuate the ten- 

' 12211' ' 

sion pulses traveling oppositely to them. The subsequent behavior of these pulses is similar 
to that of the pulse J}, i.e., the compression pulses are attenuated at the boundaries K1 and 
K2 and, in turn, generate tension pulses in the direction of K0. The times t a and t b can be 
controlled by decreasing the thickness ZI- This consideration leads to the formulation of the 
problem of how to choose the thickness Zi so that the secondary compression waves will attenu- 
ate the action of the tensile stresses at the most dangerous location, e.g., in a particular 
individual layer or at the interface between two layers. 

ITTR _ITR 
We now return to the primary tension pulses. The pulses J1233 and J122 are amplified in 

transition to more rigid layers (see the data of Figs. 2 and 3), and the situation is en- 
tirely realistic, in which the level of the tensile stresses in the i-th layer can exceed the 
fracture threshold o[. The greatest amplification in the given problem is exhibited by the 
tension pulse jITTRI233 transmitted in succession from the least rigid third layer into the most 
rigid first layer. Let us estimate the amplitude of the pulse jITTRTT transmitted into the 

123321 

first layer. Using relation (2.7), we can show that the maximum attenuation of the compres- 
sion pulse JI is attained in the last layer, where the amplitude is given as 

o~TT = ~i2~zjd[(zl + z2 ) (z~ + z,)]. (3. I ) 
128 

_ITT 
The amplitude of the tension pulse generated in reflection of the compression pulse J123 from 
the free surface K3 and returned to the first layer is determined from (2.7) with allowance 
for (3.1) and is equal to 

= - o l 2 , z j V , / [  ( z ,  + z f(z  + z,?]. (3.2) 0123321 

If we assume that the decrement of the rigidities AZ i is identical at both interfaces Ki, i.e., 
5Z i = Zl/3, it follows at once from (3 I) and (3.2) that ITT ..... I ~ITTRTT _ -~.853o~, 

�9 U123 -- U . D j J U I ,  u 1 2 3 3 2 1  - 

i.e., the tension pulse is attenuated %15% in the first layer relative to o} (see Figs. 2 and 
3). The attenuation of the tension pulse here is not caused by dissipative processes occur- 
ring in the layered medium during transmission of the shock pulse, but is determined only by 
the corresponding choice of geometrical dimension (li) and material properties (0~, ai) of the 
layers comprised in the plate. In this plan, an attenuation of the tensile stresses by even 
10-15% is quite appreciable. 

Relations (3.1) and (3.2) are readily generalized to an n-layer plate�9 For the pulse 
transmitted from the first into the j-th layer (I ~ j ~ n) and then returned (by reflection 
from Kj) into the i-th layer (I < i ~ j ~ n) we have 

oIT...T __ ~I9(j--1) z. Z" ' . .  (Z 2 ~. . . j  . . . .  ~" ~ ~3.-. z / [ ( z ~  + z~) + z3) . . . (z~l  + zj)], 
(3.3) (2j~i--1 2~2 2 2 IZ2Za...Zi_lZiZi+l...Zj_lZj(Z~+l--Zj) 

oIT.. .TRT.. .T , 2 Z Zj)" 
12...jj(~--l)...i = ff~ (Z 1 -t- Z 2 ) ' . . ( Z i -  I @ Zi) (Z i @ Zi+l)  z . .  . ( Z j - i  @ Zj) ( j+I  ~- 

F r o m  ( 3 . 3 )  f o r  j = n a n d  i = 1 we o b t a i n  

olT,..T a~2(n-1)ZiZ2... 
12 . . . . .  = Z,%/[(Z 1 @ Z2) (Z 2 @ Z3) . . - (Zn-  1 -l- Z,l)], 

118 



TABLE 3 

Three-layer 
plate 

4 
m: 

olTRT 
1221 

GITTR 
1233 

GITTRT 
12332 

GITTBTT 
12332t 
1 R R  

Gil l  
o I T R T R  

122it 
o I T T R T T R  

1233211 
G I T R R  

1222 
o ITI~RT 

i2223 
oITTRR 

i2333 
oITTBTR 

123322 
c ; I T R R R  

12222 
olTRBRT 

!22221 

'1 - -  - -  ~ Degree of branching 
I :<~:: I ~.o'~ I ~:'+" l andtypeofstress 

=-:- I 2:- I : : .  pu &- 
"~ I" IIIi I ill, I 

I ~ I ~ I " ~~ I 

l 
0,800 

0,533 

--0,200 

--0,266 

--0,320 

--0,533 

--0,711 

--0,853 

0,200 

0,320 

0,853 

--0,053 

--0,035 

--0,177 

--0,t42 

0,0t7 

0,021 

1 

0,500 ' 
0,250 I 

--0,500 

--0,250 I 

--0,375 I 

-0,250 I 
-0,375 I 
--0,562 

0,500 I 
0,375! 

0,562 

--0,125 

--0,002 

--0,t25 

--0,t87 

0,062 

0,093 

1 Primary pulses 
0,523. I compression 

0,199 

0,477 

0,323 Primarypulses 
0,477 tension 
0,199 

0,322 

0,477 

0,4771 
0,477 Secondary pulses 

compression 
0,477 

0,154 

0,059 [Secondary pulses 
0,123 I .tension 

0,154 

0'0951 Tertiary pulses 
0,141 I compression 

o f T . . . T R  T . , . T  m/92(n--1)~ Z 2 7 2 7 / [ { 7  12...,~n(n--1)...1 = - -  "1" --1 "2 . . . .  n-l" ,~ltWl + ZD~'" .(Z,~_l+ Z ,# ] .  (3 4) 

To what extent is attenuation possible for the tension pulse .IT...TRT...T . . . . .  'IN Jl2...nn(n-l)...l occurring in 
a multllayer plate in comparison with the tension pulse Jl in a homogeneous plate? To 
answer this question we examine two special cases. 

I. Let the change of the rigidities Z i in each layer of the plate be constant and let 
it obey the diminishing arithmetic progression law AZ i = AZ = Z1/n; also, Zi+1 = Zl -- ihZ = 
Zl(n- i)/n, whereupon it follows from (3.4) that 

GIT" 'T12  . . . .  ----- G/zn--1. . (n -- l)!/[(2n -- t)]!], ( 3 . 5 )  

G I T . . . T R T . . , T  - -  aI22(n-1)nv (n -- t)!/[(2n -- t)"] 2. 
12...nn(n--1)...1 = �9 "" 

The v a l u e s  o f  t h e  s t r e s s  a t t e n u a t i o n  c o e f f i c i e n t s  r e l a t i v e  t o  ~ ,  c a l c u l a t e d  a c c o r d i n g  t o  
( 3 . 5 ) ,  a r e  shown in  T a b l e  1 f o r  e q u a l  v a l u e s  o f  n .  For  l a r g e  n ,  we o b t a i n  t h e  f o l l o w i n g  f r o m  
(1.5) with the application of Stirling's formula: 

-- %',...~,~(n-1)...1 z - % a n / ~ ( n  l). ( 3 . 6 )  o12.. .n ~ 

It follows from (3.6) that the amplitude of the compression pulse in a multilayer plate can 
be reduced by a given factor, and the amplitude of the tension pulse returned to the first 
layer for sufficiently large n is approximately equal to --0.25~o I (see the data of Table I 
for n = 30, 40, 50, and 60). 

2. In another special case, the rigidities Z i of the successive layers decrease accord- 
ing to a geometric progression with the denominator q = I/n, i.e., Z i = Z1q I-l. Then the fol- 
lowing relations are valid: 

(y I T .  . . T  lZ .... = g~ [2/(n + l)l '*-'1, _IT . . .T ICT . . .T  <'12....,,n(,,-~)...t . . . . .  c~[ (n [2I(,z _a t ) ]2) 'n-1  ( 3 . 7 )  

The values of the stress attenuation coefficients calculated according to (3.7) are shown in 
Table 2 for various n. Condition (3.7) is not readily satisfied, because, e.g., the last 
layer of a three-layer plate must have Z3 ~ 10-1Zl, and in a five-layer plate Z5 ~ 10-3ZI. 
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TABLE 4 

ala~ (y 

Z,>Z~ Z~=O,5Z, 

IT 
012 

4; 
O I R R  

111 
o I T R  

i22 
o I T R T  

i221 
o I R R R  

1ttl  

olTRR 
1222 

O IRB T 
Ii12 

'O~ R 

0~,2 
O R 

1,2 

2ZJ(Zr-5 Z2) 

(Z~ -- Zl)/(Z l -5 Z2) 

(Z 2 - -  ZI)/(ZI-5 Z2) 
-2z~J(.z~ -5 z,] 

--4ZlZ2/(Z1-5 Z2)2 

-(z2 - zy/(z~ + z2) ~ 

0,666 

--0,333 

0,333 

--0,666 

--0,888 

--0,111 

--I 

--2Zo.(Zl -- ZJ/(Z1-5 Z2) 2 

--2Z~(Z2 -- Zl)/(Z1-5 Z2)2 
0 

2Z2/ (Z1  -5 Z2) 
--2Z2/(Z 1 + Z~) 

- - 1  

--0,222 

0,222 

0 

0,666 

--0,666 

JR R  IZnT . RR,  rRRI 

te  J- - " ~ - ~  ' / t 

~4 

t t  . 

Fs~ 2 FS,, 

Fig. 4 

Problem 2 (design problem). In a three-layer plate, let the primary tension pulses re- 
turned to the first layer in succession from K1, K2, and K3 have identical amplitudes, i.e., 

let 

O~R _ITRT _ITTRTT OR. (3.8) 
= 01221 = 0123821 

What conditions must the layer rigidities Z i satisfy in this case? 

For i = I and j = I, 2, 3 we obtain from (3.3) 

-_ - z2 ) / [ ( z  i + z2)2 ( z  2 + " IR '__  01. (Z  2 __ Z 1 ) / ( Z  1 _~_ Z2 ) o1221 Ol l  - -  

(3.9) 

123321 = 

Solving (3.8) and (3.9) simultaneously for Z2 and Z3, we obtain Z 2 = 0.354ZI, Z3 = 0.084ZI, 
and o R =--0.477o I , i.e., the amplitude of the tension pulses transmitted into the first layer 
is 47.7% in comparison with the amplitude of the incoming compression pulse. The following 
ratios of the rigidities are obtained in the solution of the analogous problem for a four- 
layer plate: Z2 = 0.426Zi, Z3 = 0.151ZI, Z~ = 0.036ZI, and o R = -0.4o I. This result shows 
that a predetermined condition ~ < o* can be satisfied and the danger of scabbing averted by 
the proper selection of the number of layers with specified properties in the compound plate. 
Table 3 gives the attenuation coefficients of the primary, secondary, and certain tertiary 
stress pulses for three-layer plates, in which the rigidities of the layers forming the plate 
vary according to: I) a diminishing arithmetic progression law; 2) a diminishing geometric 
progression law; 3) the law derived in the analysis of problem 2. An analysis of the data 
in Table 3 shows that the most uniform and greatest attenuation of the primary tension pulses 
occurs for the third case. The secondary and tertiary tension pulses are small, and their 
amplitudes do not exceed 10-20% in comparison with o I. 

4. TWO-LAYER PLATE 

It was noted earlier that the generated secondary compression pulses can be made to at- 
tenuate the action of the secondary tension pulses in certain individual layers or at the 
layer junctions by proper selection of the layer thicknesses li in the impact loading of 
layered plates. We now consider the following problem. 

Problem. Let a two-layer plate with Z I > Z2 be impact-loaded, and let the layer thick- 
nesses 11 and 12 be chosen so that the transit time of a stress pulse of duration t w in the 
layers is identical, i.e., htl = s (At i = ~i/ai, i = I, 2). Moreover, let us assume 
for definiteness that t w < Atl. What tensile stresses will be experienced by the layers of 
the plate and the interface KI? The problem can be stated alternatively: Can Ii and 12 be 
chosen in such a way as to ensure the minimum possible level of tensile stresses at the bound- 
ary KI? 
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An r--t diagram of the loading of such a two-layer plate is shown in Fig~ 4o In transi- 
tion across the interface the pulse jI is partitioned into a compression pulse JI T and a ten- 
sion pulse jIR (see times ti and t2 in Fig. 4; compression and tension pulses are indicated 

IT is converted by vertical and horizontal hatching, respectively). The compression pulse Ji2 
TITR moving toward the surface Ki. The expansion in reflection from K2 to an tension pulse oie2 

pulse jIR is converted in reflection from K0 to a compression pulse TIRR which also moves ~iIi' 
toward Ki (see times t~ and t4). �9 . IRR ITR �9 The process of interactlon of the pulses J and J wlth 

ill IRR le2 
the boundary Ki begins at time t5 and terminates at t 6 . The compression pulse J~1 splits at 
Ki into a transmitted compression pulse jIRRT anda reflectedtension pulseJ IRRR. ~The tension 

IJ~T pulse J~12,which propagates into the first layer, is amplified, and is converted intoa pulseJITRT~; 
t~ seco~d~rvtension pulseJ~TIT is reflected in the second layer. Table 4shows the coefficients 
o~ attenuation of thestresses inthe pulses interms of the rigiditiesZ1 andZ2, alongwith their 
numerical valuesfor Z2 = 0.5Z~ We call attention to the following: For arbitrary values of 

IRRT ~ ~ITRR Z~ and Z2 the sum of the secondary compression and tension pulses J ~  ana J~222 traveling 
in the second layer is equal to zero (this sum pulse is represented by dashed lines in Fig. 
4); on the other hand, the sum of the primary tension pulse o~22~TITRT and the tertiary tension 
pulse jIRRRI~ in the first layer is equal to a tension pulse with stress o~R =--oi which begins 
to act at a time t >~ t5 +tw/2 (see Fig. 4). In subsequent reflection from the free surface 
Ko the pulse jZR is converted to a compression pulse and, beginning at time t7, the wave 
pattern becomes similar to that considered above. At the interface K~ of the layers, com- 
pressive stresses with an amplitude os,2 will act for a period t w from time t~ to t:z~ and 
tensile stresses oR,2 will act from ts to t6 at K~ and in a tetragon next to KI. In a dif- 
ferent two-layer plate geometry where the time of transition of the compression pulse across 
K~ did not coincide uith the time of transition of the tension pulse jITR, the acting tensile 
stress at the interface K~ would be oR,2 =~22~ITRT (see Table 4). In contrast with a homo- 
geneous plate with Z =Z~, in which a tension pulse with o,IR =_oi is generated at the right 
free surface of the plate, in the two-layer plate a tension pulse with oZR is generated in 
the first in the first layer next to the interface K~, where the onset of scabbing is also 
possible. This important fact makes it possible to use blast shields not only on the back- 
side of the loaded sample [13], but also on the impact side, in which case the frontal buffer 
layer must have a high rigidity. This conclusion is consistent with the data obtained in an 
investigation [i] of the influence of the placement of rigid and compliant mats on the de- 
struction of a target. We also note here the very interesting experimental fact, presented 
and discussed in [14], that destruction takes place next to the interface for a container of 
two plates of identical material and equal thickness. The complete reproduction of the ten- 
sion pulse with o~R = --oi in the first layer is possible only for a two-layer plate; using 
relations (2.7)-(2.11) and the scheme of the formation of stress waves (see Fig. 3), we 
readily determine o~R for a multilayer plate with n >2. 

The foregoing acoustical analysis is useful (because of its comparative simplicity) for 
the understanding and on-line prediction of the wave pattern generated in impact or explosive 
loading of multilayer plates. For a more complete description of the wave processes involved 
in layered media it is necessary to invoke elastoplastic models and to characterize the ma- 
terials of the layers by equations of state that are valid over a wide range of shock wave 
intensities. 
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ASYMPTOTIC ANALYSIS OF THE PLANE CONTACT PROBLEM OF ELASTICITY 

THEORY FOR A TWO-LAYER FOUNDATION 

V. I. Avilkin and E. V. Kovalenko UDC 624.073 

An asymptotic analysis is presented of the plane contact problem of elasticity theory 
for a two-layer foundation that permits selection of some model of the upper relative to a 
thin layer (coating), depending on the relationship between the physicomechanical and geo- 
metric values of the coating and the support (elastic half plane). 

I. Let us consider an elastic half plane (y ~< 0) with Poisson ratio v2 and shear modulus 
G2. We assume that there is a relatively thin layer 0 ~< y ~< h(vi, Gi) on and rigidly con- 
nected to the half-plane surface.* Let a rigid stamp, for which the shape of the foundation 
is described by a function f(x) even in x be impressed without friction by a force P on the 
upper boundary of such a composite medium. The boundary conditions of the problem posed are 
written in the form (the superscript I refers to the layer, and the superscript 2 to the half 
plane) 

U = h :  /)(1) = v{_ (x)  = - -  (~ -]- Jr (x ) ,  (7 (1) = - -  0"4_ (x )  ( I x [ ~ a) ,  

(751)=0. ( I x l > a ) ,  ~ ( ~ ) = % { x ) = O  ( I z l < o r  ( 1 . 1 )  

y = O: (7(1) = (7y(2), ~xy~(1) 2___ ~xy'~(2) v(l)  __.~ v_(x) ~-- v (2) ,  lz ( i )  = U_(X)  ---~ tt (2). 

The stresses and strains vanish at infinity. Here 6 is the rigid displacement of the stamp 
under the action of the force P applied thereto, o• T_+(x) are the normal and tangential 
forces at the upper (plus sign) and lower (minus sign) faces of the layer, respectively, and 
v_+, u_+ are the vertical and horizontal displacements of the faces of the layer. 

The formulated problem is reduced by integral transform methods [I] to the determination 
of the contact pressures o+(x) from a convolution type integral equation of the first kind in 
a finite interval [2] 

i T ] _ V ~ e x p - ~ . _ ~ - ( ~ - x )  d c c = 2 r ~ O l [ 5 - - / ( x ) ]  ( xl<~a); ( 1 . 2 )  

7 a  - -o o + ic  

M ~- 4 l u I e-21ul - -  Ne-Tatul ( 1 . 3 )  

L (u) = M - -  (1 -[- 4a 2 + NM) e -e l~l  -4- N c  -a lu l  ' 

t q  = t -- v~', •  = 3 - 4v~, 0~ = v ~  -~ (~ = t ,  2), n = 0~0~ -~ , "  

.~'1 = (n~_t I -[- p,2Xl)(n~tl - -  •/.2) -1 ,  N = (n~tlX 2 - -  ~2Xl)( r t~IX2 -~- ~t2) -1 .  

Taking account of the notation 

u = ~h, x = J a ,  ~ = ~'a, ~ = h~-~, (1 . 4 )  
~ §  (x) 0~ - i  = q ( x ' ) ,  .6"= ha ,  ] ( x )  = r (x ' )  a 

*We call a layer thin if the dimensionless parameter is X = ha "i << I, where 2a is the loading 
section of the strip. 
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